Среда, 27.11.2024, 09:19
Приветствую Вас Гость | RSS

РЕШИ ЗАДАЧУ!

НОВОСТИ
ЛУЧШИЕ СТАТЬИ
Статистика

Онлайн всего: 11
Гостей: 11
Пользователей: 0

Блог


02:00
Квантовая природа излучения. № 173-235

Квантовая природа излучения

173. Определите, во сколько раз необходимо уменьшить термодинамическую температуру черного тела, чтобы его энергетическая светимость Re ослабилась в 16 раз.

 

174. Температура внутренней поверхности муфельной печи при открытом отверстии площадью 30 см2 равна 1,3 кК. Принимая, что отверстие печи излучает как черное тело, определите, какая часть мощности рассеивается стенками, если потребляемая печью мощность составляет 1,5 кВт.

175. Энергетическая светимость черного тела Re = 10 кВт/м2. Определите длину волны, соответствующую максимуму спектральной плотности энергетической светимости этого тела.

176. Определите, как и во сколько раз изменится мощность излучения черного тела, если длина волны, соответствующая максимуму его спектральной плотности энергетической светимости, сместилась с λ1 = 720 нм до λ2 = 400 нм.

177. Черное тело находится при температуре T1 = 3 кК. При остывании тела длина волны, соответствующая максимуму спектральной плотности энергетической светимости, изменилась на Δλ = 8 мкм. Определите температуру T2, до которой тело охладилось.

178. Черное тело нагрели от температуры T1 = 600 К до T2 = 2400 К. Определите: 1) во сколько раз увеличилась его энергетическая светимость; 2) как изменилась длина волны, соответствующая максимуму спектральной плотности энергетической светимости.

179. Площадь, ограниченная графиком спектральной плотности энергетической светимости rλ,T черного тела, при переходе от термодинамической температуры T1 к температуре T2 увеличилась в 5 раз. Определите, как изменится при этом длина волны Lmax , соответствующая максимуму спектральной плотности энергетической светимости черного тела.

180. В результате нагревания черного тела длина волны, соответствующая максимуму спектральной плотности энергетической светимости, сместилась с λ1 = 2,7 мкм до λ2 = 0,9 мкм. Определите, во сколько раз увеличилась: 1) энергетическая светимость тела; 2) максимальная спектральная плотность энергетической светимости тела. Максимальная спектральная плотность энергетической светимости черного тела возрастает по закону (rλ,T)max = CT5, где C = 1,3*10-5 Вт/(м35).

181. Определите, какая длина волны соответствует максимальной спектральной плотности энергетической светимости (rλ,T)max, равной 1,3*1011 Вт/м3.

182. Считая никель черным телом, определите мощность, необходимую для поддержания температуры расплавленного никеля 1453 °С неизменной, если площадь его поверхности равна 0,5 см2. Потерями энергии пренебречь.

183. Металлическая поверхность площадью S = 15 см2, нагретая до температуры T = 3 кК, излучает в одну минуту 100 кДж. Определите: 1) энергию, излучаемую этой поверхностью, считая ее черной; 2) отношение энергетических светимостей этой поверхности и черного тела при данной температуре.

184. Принимая Солнце за черное тело и учитывая, что его максимальной спектральной плотности энергетической светимости соответствует длина волны 500 нм, определите: 1) температуру поверхности Солнца; 2) энергию, излучаемую Солнцем в виде электромагнитных волн за 10 мин; 3) массу, теряемую Солнцем за это время за счет излучения.

185. Определите температуру тела, при которой оно при температуре окружающей среды t0 = 23 °С излучало энергии в 10 раз больше, чем поглощало.

186. Считая, что тепловые потери обусловлены только излучением, определите, какую мощность необходимо подводить к медному шарику диаметром d = 2 см, чтобы при температуре окружающей среды t0 = -13 °С поддерживать его температуру равной t = 17 °С. Примите поглощательную способность меди AT = 0,6.

187. Определите силу тока, протекающего по вольфрамовой проволоке диаметром d = 0,8 мм, температура которой в вакууме поддерживается постоянной и равной t = 2800 °С. Поверхность проволоки считать серой с поглощательной способностью AT = 0,343. Удельное сопротивление проволоки при данной температуре ρ = 0,92*10-4 Ом*см. Температура окружающей проволоку среды t0 = 17 °С.

192. Используя формулу Планка, определите спектральную плотность потока излучения единицы поверхности черного тела, приходящегося на узкий интервал длин волн Δλ = 5 нм около максимума спектральной плотности энергетической светимости, если температура черного тела T = 2500 К.

194. Для вольфрамовой нити при температуре T = 3500 К поглощательная способность AT = 0,35. Определите радиационную температуру нити.

196. Определите максимальную скорость фотоэлектронов, вырываемых с поверхности металла, если фототок прекращается при приложении задерживающего напряжения U0 = 3,7 В.

198. Красная граница фотоэффекта для некоторого металла равна 500 нм. Определите минимальное значение энергии фотона, вызывающего фотоэффект.

200. Фотоэлектроны, вырываемые с поверхности металла, полностью задерживаются при приложении обратного напряжения U0 = 3 В. Фотоэффект для этого металла начинается при частоте падающего монохроматического света ν0 = 6*1014 с-1. Определите: 1) работу выхода электронов из этого металла; 2) частоту применяемого излучения.

 

201. Определите работу выхода A электронов из вольфрама, если "красная граница" фотоэффекта для него λ0 = 275 нм.

202. Калий освещается монохроматическим светом с длиной волны 400 нм. Определите наименьшее задерживающее напряжение, при котором фототок прекратится. Работа выхода электронов из калия равна 2,2 эВ.

203. Красная граница фотоэффекта для некоторого металла равна 500 нм. Определите: 1) работу выхода электронов из этого металла; 2) максимальную скорость электронов, вырываемых из этого металла светом с длиной волны 400 нм.

204. Выбиваемые светом при фотоэффекте электроны при облучении фотокатода видимым светом полностью задерживаются обратным напряжением U0 = 1,2 В. Специальные измерения показали, что длина волны падающего света λ = 400 нм. Определите красную границу фотоэффекта.

205. Задерживающее напряжение для платиновой пластинки (работа выхода 6,3 эВ) составляет 3,7 В. При тех же условиях для другой пластинки задерживающее напряжение равно 5,3 В. Определите работу выхода электронов из этой пластинки.

206. Определите, до какого потенциала зарядится уединенный серебряный шарик при облучении его ультрафиолетовым светом длиной волны λ = 208 нм. Работа выхода электронов из серебра A = 4,7 эВ.

207. При освещении вакуумного фотоэлемента монохроматическим светом с длиной волны λ1 = 0,4 мкм он заряжается до разности потенциалов φ1 = 2 В. Определите, до какой разности потенциалов зарядится фотоэлемент при освещении его монохроматическим светом с длиной волны λ1 = 0,3 мкм.

208. Плоский серебряный электрод освещается монохроматическим излучением с длиной волны λ = 83 нм. Определите, на какое максимальное расстояние от поверхности электрода может удалиться фотоэлектрон, если вне электрода имеется задерживающее электрическое поле напряженностью E = 10 В/см. Красная граница фотоэффекта для серебра λ0 = 264 нм.

209. Фотоны с энергией ε = 5 эВ вырывают фотоэлектроны из металла с работой выхода A = 4,7 эВ. Определите максимальный импульс, передаваемый поверхности этого металла при вылете электрона.

210. При освещении катода вакуумного фотоэлемента монохроматическим светом с длиной волны λ = 310 нм фототок прекращается при некотором задерживающем напряжении. При увеличении длины волны на 25% задерживающее напряжение оказывается меньше на 0,8 В. Определите по этим экспериментальным данным постоянную Планка.

211. Определите максимальную скорость Vmax фотоэлектронов, вырываемых с поверхности цинка (работа выхода A = 4 эВ), при облучении у -излучением с длиной волны λ = 2,47 пм.

212. Определите для фотона с длиной волны λ = 0,5 мкм: 1) его энергию; 2) импульс; 3) массу.

213. Определите энергию фотона, при которой его эквивалентная масса равна массе покоя электрона. Ответ выразите в электрон-вольтах.

214. Определите, с какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона, длина волны которого λ = 0,5 мкм.

215. Определите длину волны фотона, импульс которого равен импульсу электрона, прошедшего разность потенциалов U = 9,8 В.

216. Определите температуру, при которой средняя энергия молекул трехатомного газа равна энергии фотонов, соответствующих излучению λ = 600 нм.

217. Определите, с какой скоростью должен двигаться электрон, чтобы его кинетическая энергия была равна энергии фотона, длина волны которого λ = 0,5 мкм.

218. Определите, с какой скоростью должен двигаться электрон, чтобы его импульс был равен импульсу фотона, длина волны которого λ = 2 пм.

220. Давление монохроматического света с длиной волны λ = 500 нм на зачерненную поверхность, расположенную перпендикулярно падающим лучам, равно 0,12 мкПа. Определите число фотонов, падающих ежесекундно на 1 м2 поверхности.

221. На идеально отражающую поверхность площадью S = 5 см2 за время t = 3 мин нормально падает монохроматический свет, энергия которого W = 9 Дж. Определите: 1) облученность поверхности; 2) световое давление, оказываемое на поверхность.

 

222. Определите давление света на стенки электрической 150-ваттной лампочки, принимая, что вся потребляемая мощность идет на излучение и стенки лампочки отражают 15% падающего на них света. Считайте лампочку сферическим сосудом радиуса 4 см.

223. Давление монохроматического света с длиной волныλ = 500 нм на зачерненную поверхность, расположенную перпендикулярно падающему излучению, равно 0,15 мкПа. Определите число фотонов, падающих на поверхность площадью 40 см2 за одну секунду.

224. Давление Р монохроматического света с длиной волны λ = 600 нм на зачерненную поверхность, расположенную перпендикулярно падающему излучению, составляет 0,1 мкПа. Определите: 1) концентрацию n фотонов в световом пучке; 2) число N фотонов, падающих ежесекундно на 1 м2 поверхности.

225. На идеально отражающую плоскую поверхность нормально падает монохроматический свет с длиной волны λ = 0,55 мкм. Поток излучения Фe составляет 0,45 Вт. Определите: 1) число фотонов N, падающих на поверхность за время t = 3 с; 2) силу давления, испытываемую этой поверхностью.

226. Плоская световая волна интенсивностью I = 0,1 Вт/см2 падает под углом α = 30° на плоскую отражающую поверхность с коэффициентом отражения ρ = 0,7. Используя квантовые представления, определите нормальное давление, оказываемое светом на эту поверхность.

228. Определите длину волны рентгеновского излучения, если при комптоновском рассеянии этого излучения под углом ν = 60° длина волны рассеянного излучения оказалась равной 57 пм.

229. Фотон с энергией ε = 1,025 МэВ рассеялся на первоначально покоившемся свободном электроне. Определите угол рассеяния фотона, если длина волны рассеянного фотона оказалась равной комптоновской длине волны λc = 2,43 пм.

230. Узкий пучок монохроматического рентгеновского излучения падает на рассеивающее вещество. Оказывается, что длины волн рассеянного под углами ν1 = 60° и ν2 = 120° излучения отличаются в 1,5 раза. Определите длину волны падающего излучения, предполагая, что рассеяние происходит на свободных электронах.

231. Фотон с длиной волны λ = 5 пм испытал комптоновское рассеяние под углом ν = 90° на первоначально покоившемся свободном электроне. Определите: 1) изменение длины волны при рассеянии; 2) энергию электрона отдачи; 3) импульс электрона отдачи.

232. Фотон с энергией ε = 0,25 МэВ рассеялся на первоначально покоившемся свободном электроне. Определите кинетическую энергию электрона отдачи, если длина волны рассеянного фотона изменилась на 20%.

233. Фотон с энергией 0,3 МэВ рассеялся под углом ν = 180° на свободном электроне. Определите долю энергии фотона, приходящуюся на рассеянный фотон.

234. Фотон с энергией 100 кэВ в результате комптоновского эффекта рассеялся при соударении со свободным электроном на угол ν = π/2. Определите энергию фотона после рассеяния.

235. Фотон с энергией ε = 0,25 МэВ рассеялся под углом ν = 120° на первоначально покоившемся электроне. Определите кинетическую энергию электрона отдачи.


Категория: Трофимова. Курс физики. Задачи с решениями. | Просмотров: 20843 | Добавил: Olex | Теги: трофимова
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Поиск
Вход на сайт
Календарь
«  Октябрь 2012  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
293031
ЛУЧШИЕ СТАТЬИ
НОВОСТИ

Copyright MyCorp © 2024